3x^2+8x-384=0

Simple and best practice solution for 3x^2+8x-384=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+8x-384=0 equation:


Simplifying
3x2 + 8x + -384 = 0

Reorder the terms:
-384 + 8x + 3x2 = 0

Solving
-384 + 8x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-128 + 2.666666667x + x2 = 0

Move the constant term to the right:

Add '128' to each side of the equation.
-128 + 2.666666667x + 128 + x2 = 0 + 128

Reorder the terms:
-128 + 128 + 2.666666667x + x2 = 0 + 128

Combine like terms: -128 + 128 = 0
0 + 2.666666667x + x2 = 0 + 128
2.666666667x + x2 = 0 + 128

Combine like terms: 0 + 128 = 128
2.666666667x + x2 = 128

The x term is 2.666666667x.  Take half its coefficient (1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
2.666666667x + 1.777777780 + x2 = 128 + 1.777777780

Reorder the terms:
1.777777780 + 2.666666667x + x2 = 128 + 1.777777780

Combine like terms: 128 + 1.777777780 = 129.77777778
1.777777780 + 2.666666667x + x2 = 129.77777778

Factor a perfect square on the left side:
(x + 1.333333334)(x + 1.333333334) = 129.77777778

Calculate the square root of the right side: 11.392004994

Break this problem into two subproblems by setting 
(x + 1.333333334) equal to 11.392004994 and -11.392004994.

Subproblem 1

x + 1.333333334 = 11.392004994 Simplifying x + 1.333333334 = 11.392004994 Reorder the terms: 1.333333334 + x = 11.392004994 Solving 1.333333334 + x = 11.392004994 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = 11.392004994 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = 11.392004994 + -1.333333334 x = 11.392004994 + -1.333333334 Combine like terms: 11.392004994 + -1.333333334 = 10.05867166 x = 10.05867166 Simplifying x = 10.05867166

Subproblem 2

x + 1.333333334 = -11.392004994 Simplifying x + 1.333333334 = -11.392004994 Reorder the terms: 1.333333334 + x = -11.392004994 Solving 1.333333334 + x = -11.392004994 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = -11.392004994 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = -11.392004994 + -1.333333334 x = -11.392004994 + -1.333333334 Combine like terms: -11.392004994 + -1.333333334 = -12.725338328 x = -12.725338328 Simplifying x = -12.725338328

Solution

The solution to the problem is based on the solutions from the subproblems. x = {10.05867166, -12.725338328}

See similar equations:

| 20-(35-50+100)= | | 21+2y-7=9y-10-3y | | 7a-3a=a | | 25=w/4-2 | | 5-2-7h+4h= | | 2x^2+kx+12=x-4 | | R+C=24 | | 25=w/4 | | x^2-5x-11=x^2-7-3 | | (2c-5)(6c+7)= | | 3m-2=m+54 | | 2t+3t-1=2t+8 | | -2+7x=20 | | -2t^2+4t+8=10 | | 3(n+1)=-9 | | b+3a=15 | | 0.7(x+5)+1.7(x-4)= | | 3(x-1)=99 | | 2u-16+2u-4+u-9=180 | | f(x)=x^2-10x+27 | | 2u-16+2u-4+u+0-9=180 | | -4m^7n^4/3m^-7n^0 | | 24-6n=n+71 | | 2/3x26= | | 2b+3b-26+3b+6=180 | | x/8=8/18 | | 40=w(L+2) | | w+3+2w-42+30=180 | | w+3+30+2w-42=180 | | 3/4x-1/4x=-4 | | 62(60-x)=25x | | -4600=(-2268)/(x^2) |

Equations solver categories